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We calculate the critical current of a superconductor/ferromagnetic/superconductor �S/FM/S� Josephson
junction in which the FM layer has a weakened conical magnetic structure composed of an in-plane rotating
antiferromagnetic phase and an out-of-plane ferromagnetic component. In view of the realistic electronic
properties and magnetic structures that can be formed when conical magnets such as Ho are grown with a
polycrystalline structure in thin-film form by methods such as direct current sputtering and evaporation, we
have modeled this situation in the dirty limit with a large magnetic coherence length �� f�. This means that the
electron mean free path is much smaller than the normalized spiral length � /2� which in turn is much smaller
than � f �with � as the length a complete spiral makes along the growth direction of the FM�. In this physically
reasonable limit we have employed the linearized Usadel equations: we find that the triplet correlations are
short ranged and manifested in the critical current as a rapid oscillation on the scale of � /2�. These rapid
oscillations in the critical current are superimposed on a slower oscillation which is related to the singlet
correlations. Both oscillations decay on the scale of � f. We derive an analytical solution and also describe a
computational method for obtaining the critical current as a function of the conical magnetic layer thickness.
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I. INTRODUCTION

The interaction of singlet-type superconductors �S� with
ferromagnetic �FM� materials in S/FM hybrid systems is a
field of extensive and ongoing research �see Refs. 1–3 and
references therein�. In proximity, the interaction of these
competing electron orders is characterized by an oscillating
component in the Cooper pair wave function which leads to
a number of interesting phenomena: the critical supercon-
ducting temperature Tc dependence of S/FM bilayers on FM
layer thickness df,

4–7 dependence of Tc on the orientation of
FM layers in FM� /S /FM� spin valves8–13 and S /FM� /FM�
multilayers, and finally the realization of � coupling in
S/FM/S Josephson junctions.14–18

The standard analysis of the S/FM systems has mostly
assumed that the FM is homogeneous and collinear, in which
case only the singlet superconducting correlation appears in
the theory. Extending this standard approach, theory strongly
indicates that if the FM is inhomogeneous and noncollinear,
the longer-ranged triplet superconducting correlations should
then emerge at the S/FM interface.1–3 These triplet correla-
tions should then be insensitive to the exchange field of the
FM material and as such their proximity range is expected to
be similar to that of singlet pairs in a superconductor/normal
metal system.

Inhomogeneous magnetization exists in a range of mate-
rial systems, which can be classified into three categories: �1�
magnetic domain walls; �2� ferromagnetic multilayers such
as when FM layers are decoupled via a nonmagnetic �NM�
spacer to form spin-active devices; and �3� the intrinsically
inhomogeneous and noncollinear magnetic materials.

Domain walls were one of the first magnetically inhomo-
geneous systems to be combined with superconductivity. Al-

though experimental studies of such systems are notoriously
challenging because of the need to control the magnetism at
the nanometer scale, results and analysis have indicated that
domain walls are favorable nucleation sites for
superconductivity.19–23 Theoretically, the emergence of trip-
let components in junctions containing a single domain wall
and or a multidomain ferromagnet �MDFM� have been ex-
tensively analyzed.24,25 Recently, large area S/MDFM/S
junctions have been fabricated.26 In this type of junction, the
amplitude of the critical current is expected to decay expo-
nentially with FM layer thickness. If singlet-type electron
pairs are scattered into triplet ones at the domain-wall re-
gions, it is expected that for a critical thickness of the
MDFM the triplet correlations will dominate over the singlet
ones leading to slower decay in the critical current with the
MDFM thickness. So far, evidence of a crossover from sin-
glet to triplet-dominated transport in these types of systems
is nonexistent.

The second category, the ferromagnetic multilayers, have
been combined with superconductors in S /FM� /FM� /S
junction form although most studies have been theoretical up
to now27–30 with only a few experiments showing how the
Josephson ground state is affected by the orientation of the
FM layers.31,32 The majority of experimental studies have
focused on how a superconducting layer is modified by the
relative orientation of the FMs. In these systems, however,
the triplet superconducting components that exist when the
FMs are noncollinear only transmit information about the
direction of the magnetic layers.33,34 To observe a longer-
ranged triplet proximity effect, it is thought that the Joseph-
son junction must contain three or more FMs,30,35 with each
offset from the other by an angle �� �0,�� �with � as the
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antiparallel configuration�. In principle, the angle � and thus
the triplet components could be controlled by the application
of an external magnetic field. Unfortunately, the implemen-
tation of a large enough change in the angle � with an ap-
plied magnetic field is very difficult to realize without
strongly suppressing the superconductivity.

The third category, the intrinsically noncollinear magnets,
is potentially one of the simplest systems to combine with a
superconductor to experimentally study triplet correlations.36

Recently,37 interferometer measurements of superconducting
Al coupled to the rare-earth metal Ho have been made. In
these Al/Ho/Al junctions, superconducting phase periodic
conductance oscillations were observed indicating the pres-
ence of a longer-ranged proximity effect when interpreted in
the limit of a small coherence length in the Ho relative to the
length of a complete spiral �.38 It is understood that the
triplet correlations were generated at the Al/Ho interface due
to a rotating magnetization present there and sustained by a
continuous magnetic spiral throughout the length of the Ho.
A similar explanation39–42 was given for a long-ranged prox-
imity effect observed in the half-metal CrO2.43 In this sys-
tem, the triplet current was shown to be insensitive to the
strong polarization of the half metal. Spin mixing at the in-
terface is currently the best explanation for the triplet prox-
imity effect observed although a better understanding of the
interfaces that can exist in these types of material systems is
needed to verify this explanation. For Ho, it is well known
that growing it in thin-film form with a magnetic spiral at the
interface is difficult to achieve. This again highlights a need
to improve our understanding of the likely properties and
structures that can arise at the interface of noncollinear mag-
nets, such as Ho, with superconducting materials.

The magnetic structure44–46 and electronic/thermal
properties45 of the rare-earth Ho are well known. Its mag-
netic structure has been characterized in bulk, single crystal,
and thin-film forms by neutron diffraction, x-ray diffraction,
and vibrating sample magnetometery. In thin-film form, the
quality of the conical magnetic structure is poorly under-
stood although it is well known that the growth method and
growth conditions, crystal forms, and interfacing materials
affect the ordering range of the magnetic structure.44,45

Long-ranged magnetic ordering in Ho requires a coherent
crystal structure in which the c axis is the screw axis with the
moments in the basal plane configured into a distorted helix
parallel to the c axis. The quality of the Ho �e.g., impurity
content and roughness� and the strain at the NM/Ho interface
are both important factors in determining the scale of mag-
netic ordering; for example, substantial intermixing at the
NM/FM interface may disturb the growth in the helix which
may affect, smear out, or even destroy any triplet correla-
tions. Neutron-diffraction studies on epitaxial �interfacially
strained� Nb/Ho bilayer films grown by dc magnetron
sputtering47 at high temperature suggest the presence of an
in-plane spiral �antiferromagnetic part� but no out-of-plane
pitch �ferromagnetic part� was detected even down to very
low temperatures T�1 K. This implies that the strain at the
Nb/Ho interface is suppressing the ferromagnetic compo-
nent. Further studies on polycrystalline Nb/Ho/Nb trilayer
films have also been made.48 In these films strain at the
Nb/Ho interface is lower and from Josephson-junction-type

measurements a weakly conical magnetic structure was con-
firmed from field-dependent measurements of the junction’s
critical current as a function of the Ho spacer layer thickness.

Altogether, the above review shows that although Ho can
be grown on top of thick Nb leads with a conical magnetic
structure, strain at the interface does weaken the ferromag-
netic component possibly implying a weaker magnetism. The
motivation behind this work is to complement the currently
available theory on S/FM/S junctions with a conical FM
weak link by considering the physically reasonable situation
�see Sec. III� in which the conical ferromagnetic coherence
length � f is much longer than the normalized spiral length
� /2�. Because both � f and � /2� are much larger than the
electron mean free path l �dirty limit�, the S/FM/S junction
can be described within the framework of the linearized Us-
adel equations.

This paper is organized as follows: Sec. II reviews the
magnetic and electronic properties of thin-film Ho and out-
lines the important physical properties of the situation being
analyzed in this paper; in Secs. III and IV the general theo-
retical framework in which we model a Josephson junction
containing a conical magnet is described with analytical so-
lutions to obtain the Josephson current explained; in Sec. V
we present a computational method for calculating the Jo-
sephson current, which is particularly useful to experimen-
talists.

II. MAGNETIC STRUCTURE AND ELECTRONIC
PROPERTIES OF THIN-FILM HOLMIUM

Consider the general structure of a conical magnet which
consists of a rotating in-plane magnetization and a constant
out-of-plane magnetization �see illustrations in Figs.
1�a�–1�c��. The in-plane component is effectively an antifer-
romagnetic �AFM� state which orders itself at the Néel tem-
perature �n, while the out-of-plane component can be con-
sidered to be a ferromagnetic phase which orders itself at the
Curie temperature of the material. Thus, the strength or ex-

(a)

S/Conical ferromagnet/S
Junction

(b)

�c < T < n�

(c)

f

T < c�

��� �= /Q

� �� �/Q

FIG. 1. �Color online� �a� An illustration of two singlet-type
superconductors �S� sandwiching a ferromagnet with a conical mag-
netic structure �Ho�. The two magnetic phases of Ho, �b� the in-
plane antiferromagnetic spiral phase of Ho below its Néel tempera-
ture �n, and �c� the conical magnet phase of Ho below its Curie
temperature �c; the antiferromagnetic component Ir rotating in the
�x ,y� plane; the ferromagnetic component Iz pitched toward the z
axis; and the resultant magnetization vector I rotating on the surface
of a cone. In the limit considered in this paper, , the ferromagnetic
coherence length � f is much larger than � /2�.
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change interaction energy I of the ferromagnetic part is re-
lated to the Curie temperature: I�kB�c. The in-plane com-
ponent completes a full rotation in a distance of � along the
z axis, which implies the distance along z on which the in-
plane component rotates in 1 rad is � /2�. From now on,
� /2� will be referred to as the normalized spiral length.

In the analysis that follows this section we shall assume
that the electron mean-free path � is smaller than both the
coherence length of Ho � f and the normalized spiral length
� /2�. For Ho in thin-film form, this limiting situation is
justified for the case when it is sputter deposited and poly-
crystalline.

Polycrystalline thin films of Ho have a large residual re-
sistivity �0 in the �6–12��10−7 	m range �see Refs. 46 and
48 and references therein�. A rough estimate of the electron
mean free path for the conduction electrons around 4 K using
the relation �=
Fm /�0ne2, where 
F, the Fermi velocity is
1.6�106 m /sec,46 m is the mass of the electron, and n is the
number density of free electrons, gives a �0.5–1.0� nm range,
which is smaller than both � f� �6–7� nm and � /2�� 1.1
nm.48 Even in single-crystal form, the resistivity of thin-film
Ho is large and around 6�10−7 	m with an electron mean-
free path of �1.0 nm in the c-axis orientation.

III. GENERAL SOLUTION IN A CONICAL
FERROMAGNET

Let us consider a conical ferromagnet FM, the axis of
which coincides with the z axis. The magnetization vector
and hence the exchange field I= �Ix , Iy , Iz� has a constant
axial component Iz and a radial component Ir, which rotates
in the �x ,y� plane with wave vector Q=2� /� as we move
along the z direction �see Fig. 1�. The x and y components of
I are therefore given by

Ix�z� = Ir cos�Qz� and Iy�z� = Ir sin�Qz� . �1�

In this section we find the solutions for the anomalous
Green’s function in the conical FM, considering in particular
the case of large Q. We assume that the dirty limit is fulfilled,
which means that the FM coherence length �� f =��Df / 	I	
with Df being the diffusivity of the FM� and the normalized
spiral length � /2� are both much larger than the electron
mean-free path, i.e., � f ,� /2���. If it is also assumed that
the anomalous function is sufficiently small in the FM
�which is the case if the S/FM interfacial resistance is large
enough�,1 we can use the linearized Usadel equation35

�Df
d2F̂�z�

dz2 − 2�	
	F̂�z� − sgn�
�i�I�z� · �̂,F̂�z��+ = 0,

�2�

where the anomalous Green’s function

F̂ = f01̂ + f · �̂ �3�

is a matrix in spin space with f= �fx , fy , fz�, and �̂
= ��̂x , �̂y , �̂z� is a vector containing the Pauli matrices. The
component f0 is even, while fx, fy, and fz are odd functions
of the frequency 
. The Matsubara frequencies are given by


= �2n+1��kBT /� with n=0, �1, �2, . . . at temperature T
and �a ,b�+=ab+ba is the anticommutator. If we substitute
expression �3� into Eq. �2� we obtain a set of equations for

the four components of the anomalous function F̂,

1

2
�Df

d2f0�z�
dz2 − �
f0�z� − i�I�z� · f�z�� = 0, �4�

1

2
�Df

d2fx,y,z�z�
dz2 − �
fx,y,z�z� − iIx,y,z�z�f0�z� = 0. �5�

Since the symmetric properties of the Usadel equations with
respect to 
 are trivial, only the case of 
�0 is treated from
now; we already omitted sgn�
� and used 
 instead of 	
	 in
Eqs. �4� and �5�. After putting expression �1� into Eqs. �4�
and �5�, they can be simplified with the substitution f�

= fx� ify, which yields

d2f0

dz2 − 2k

2 f0 − i�2kz

2fz + kr
2�f+e−iQz + f−eiQz�� = 0, �6�

d2f�

dz2 − 2k

2 f� − 2ikr

2f0e�iQz = 0, �7�

d2fz

dz2 − 2k

2 fz − 2ikz

2f0 = 0. �8�

The quantities k
=�
 /Df and kz,r=�Iz,r /�Df were also in-
troduced at this step.

By searching a solution for Eqs. �6�–�8� in the form of

f0,z = A0,ze
Kz and f� = A�eKze�iQz �9�

with A�=A+��A−�, we obtain a set of algebraic equations for
the amplitudes A0, Az, A+�, and A−�

�K2 − 2k

2 �A0 − 2ikz

2Az − 2ikr
2A+� = 0, �10�

− 2ikz
2A0 + �K2 − 2k


2 �Az = 0, �11�

− 2ikr
2A0 + �K2 − Q2 − 2k


2 �A+� + 2iKQA−� = 0, �12�

2iKQA+� + �K2 − Q2 − 2k

2 �A−� = 0. �13�

A nontrivial solution only exists for the amplitudes if the
determinant of the system is zero; this gives a fourth-order
equation for K2,

��K2 − 2k

2 �2 + 4kz

4���K2 − Q2 − 2k

2 �2 + 4K2Q2�

+ 4kr
4�K2 − 2k


2 ��K2 − Q2 − 2k

2 � = 0, �14�

which is equivalent to the similar equation obtained by
Volkov et al.38 In their paper, they considered the limit in
which kr ,kz�k
 ,Q, whereas we take the limit of Q
�kr ,kz ,k
. This limit seems to be appropriate in the case of
Ho, which has a conical magnetic structure with �
6 nm
and therefore Q
1 nm−1. The exchange energies Ir and Iz
can be estimated from the AFM and FM ordering tempera-
tures; assuming a typical diffusivity Df 
5�10−4 m2 s−1

and a temperature T
4 K, we obtain kr�0.2 nm−1, kz, and
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k
�0.05 nm−1, which are all much smaller than Q.
In order to make the approximations more transparent, we

introduce the dimensionless quantities

� =
K2

Q2 and �r,z,
 =
kr,z,


2

Q2 �15�

with �r,z,
�1. Without assuming anything about the relative
values of these small numbers, we take the case in which
their respective leading terms are on the same order of mag-
nitude; our results are therefore applicable to the general case
and the particular cases can be obtained by taking appropri-
ate limits. It turns out that the leading terms in the small
quantities �r,z,
 are on the orders of �r

2, �z, and �
, hence we
assume for the approximations that �r

2��z��
. Two roots of
� are on the order of 1; if we neglect every term smaller than
�r

2 from Eq. �14�, we obtain

�1 + ��2 =
4�


�
�1 + � + 2�2� +

4�r
2

�
�1 − �� . �16�

Since the terms on the right side are �1, the left side has to
be small, which is only possible if �
−1. In this case we
can substitute �=−1 on the right side, hence Eq. �16� reduces
to

�1 + ��2 + 8�
 + 8�r
2 = 0, �17�

which gives �=−1� i�8�
+8�r
2. If we only keep the roots of

K for which Re�K��0 and still neglect the terms smaller
than �r

2, we obtain

K1,2 = � iQ + Q�2�
 + 2�r
2 �18�

for the first two eigenvalues K. These correspond to rapidly
oscillating solutions �together with the rotation of the mag-
netization vector�, which decay much more slowly in the
negative direction. Since K only appears as K2 in Eq. �14�,
the roots with Re�K��0 can all be paired up with their re-
spective opposites and give the same solutions decaying in
the positive direction. Expression �18� without the term 2�r

2

is equivalent to the result obtained by Bergeret et al.2 for a
spiral ferromagnet �Iz=0, hence �z=0�.

The two remaining roots for � are on the order of �r
2; in

this case we can treat � as being small and hence neglect
larger powers of it. However, we must keep terms up to the
order of �r

4 in Eq. �14� to obtain the quadratic equation

�2 − 4��r
2 + �
�� + 4��z

2 + �

2 + 2�
�r

2� = 0, �19�

which yields �=2�
+2�r
2�2��r

4−�z
2. Note that the leading

terms are indeed on the orders of �r
2, �z, and �
, as stated

above. Two more eigenvalues K with Re�K��0 are obtained,

K3,4 = Q�2�
 + 2�r
2 � 2��r

4 − �z
2. �20�

The behavior of these solutions depends on the relative val-
ues of �z and �r

2 and now we can consider the two particular
cases. If �z��r

2, the roots K3,4 are complex conjugates and
solutions �20� describe a slowly decaying oscillation in the
negative direction. If �z��r

2, the roots K3,4 are real, which

means that F̂ decays exponentially without oscillations. This
case corresponds to almost in-plane magnetization and con-

tains the limit of the spiral ferromagnet; expression �20� re-
duces to K3=Q�2�
+4�r

2 and K4=Q�2�
 if �z=0. The solu-
tion corresponding to K4 has zero amplitude in any S/FM
system, while K3 coincides with the value obtained by Berg-
eret et al.2

After determining the eigenvalues K we calculate the cor-
responding eigenvectors, i.e., the relative amplitudes of the
different components f0, fz, and f� in each solution. Since
the roots K1,2 given by Eq. �18� appear as a direct conse-
quence of the rotation of the magnetization vector, we expect
the components f� to dominate in the corresponding solu-
tions, and hence we choose A1+� =A2+� =1 �A1+� and A2+� are the
A+� amplitudes appearing in Eqs. �10�–�13� for the solutions
corresponding to the roots K1 and K2, respectively�. Equation
�11� shows that Az�A0 in these cases, while A0�A+�=1 ac-
cording to Eq. �10�. It is valid therefore to take Az
0, then
use Eqs. �10� and �13� together with Eq. �18� to obtain A1−�
=−1, A2−� =1, and A10=A20=−2i�r in the leading approxima-
tion.

The solutions corresponding to the other two roots K3,4
predominantly consist of the components f0 and fz, therefore
we choose A30=A40=1. Equations �12� and �13� show that
A−��A+��A0 in these cases, which implies that A−�
0. Keep-
ing this in mind we can apply Eq. �12� to get A3+� =A4+� =
−2i�r and Eq. �11� with Eq. �20� to obtain

A3z =
i�z

�r
2 + ��r

4 − �z
2

and A4z =
i�z

�r
2 − ��r

4 − �z
2

. �21�

We can again consider the two cases: if �z��r
2, A3z, and A4z

are complex numbers with unit modulus, and A4z=−A3z
� . In

particular, Eq. �21� reduces to

A3z 
 1 + i
�r

2

�z
and A4z 
 − 1 + i

�r
2

�z
�22�

in the limit of �z��r
2. If �z��r

2, A3z, and A4z are purely
imaginary numbers with 	A3z		A4z	=1, they are being ap-
proximated as

A3z 

i�z

2�r
2 and A4z 


2i�r
2

�z
�23�

if �z��r
2. In the limiting case of the spiral ferromagnet ��z

→0�, A3z→0, and 	A4z	→�. The latter means that the solu-

tion for F̂ corresponding to the root K4 has only fz compo-
nent �and no singlet f0 component�; its amplitude is therefore
zero, as already mentioned above.

If we take the eigenvalues K with Re�K��0, the corre-
sponding eigenvectors are similar to those corresponding to
their opposites; Eqs. �10�–�13� show that the amplitudes A0,
Az, and A+� remain the same if we multiply K by �−1�, while
A−� changes sign. According to A�=A+��A−�, this means that
A+ and A− are exchanged. Keeping this in mind, we can write
down the general solution for the linearized Usadel Eq. �2� in
a conical ferromagnet. If the FM occupies a region of thick-
ness d in the z direction �more specifically, the range 0�z
�d�, the general solution can be written as
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F̂ = �
n=1

4 �Bne−Knz
An01̂ + Anz�̂z +
1

2�
�

An�e�iQz��̂x � i�̂y��
+ Cne−Kn�d−z�
An01̂ + Anz�̂z

+
1

2�
�

An�e�iQz��̂x � i�̂y��� , �24�

where the eigenvalues Kn and the relative amplitudes An0,
Anz, and An�=An+� �An−� are given by the expressions ob-
tained in this section. Note that the amplitudes An+ and An−
are exchanged in the terms corresponding to the solutions
with Re�K��0, as mentioned above. The amplitudes Bn and
Cn are determined by the boundary conditions at z=0 and
z=d; these are discussed in Sec. IV.

IV. JOSEPHSON CURRENT IN THE S/FM/S JUNCTION

If the regions with z�0 and z�d on the two sides of the
FM are occupied by two identical half-infinite superconduct-
ors S, we obtain a S/FM/S junction. The axis z of the conical
FM is perpendicular to the S/FM interfaces �see Fig. 1�. The
two superconductors have a phase difference of � with re-
spect to each other, so the bulk pairing potentials in the left
and the right S are given by �e−i�/2 and �ei�/2 ���R�. The

normal and the anomalous Green functions are ĜL,R=Gs1̂

and F̂L,R=Fs1̂e�i�/2 in the bulk of the left and right super-
conductors, respectively, where Gs=�
 /��2
2+�2 and Fs

=� /��2
2+�2. The normal-state conductivities of the S and
the FM are �s and � f, while the interfacial resistance per unit
area between the S and the FM is denoted by R. We intro-
duce the dimensionless quantities

� =
� f�s

�s� f
and �B =

R� f

� f
, �25�

where �s=��Ds /2�kBT is the superconducting �quasiparti-
cle� coherence length of the S with Ds being its diffusivity. If
the interfacial resistance is large enough, i.e., �b
�max�1,��, we can use rigid boundary conditions at the
S/FM interface,1 we assume that the pairing potential and
hence the Green functions are the same at the interface as in
the bulk material. Furthermore, because of �b�1 the anoma-

lous function F̂ is sufficiently small in the FM, which verifies
using the linearized Usadel equations in the FM �see Sec.
III�.

Assuming that �b�max�1,�� is true, the rigid boundary
conditions are1

F̂L = GsF̂�0� − �B� f
dF̂�0�

dz
�26�

at the left side of the FM �z=0� and

F̂R = GsF̂�d� + �B� f
dF̂�d�

dz
�27�

at the right side of the FM �z=d�. If the FM layer is thick
enough �d�� f�, the terms containing e−Kn�d−z� can be ne-

glected from the general solution �24� near z=0, while the
terms containing e−Knz can be neglected near z=d. In this
case we can take the components f0, fz, and f� of Eq. �24� at
z=d and obtain equations for the amplitudes Cn

�

�

ei�/2 = �

n=1

4

CnAn0�1 + �Kn� , �28�

0 = �
n=1

4

CnAnz�1 + �Kn� , �29�

0 = �
n=1

4

CnAn��1 + ��Kn � iQ�� , �30�

where the notation �=�B� f /Gs is used. Similar equations
hold for the amplitudes Bn at z=0, the only difference is that
the sign of the phase � /2 in the first term of Eq. �28� is
negative. Substituting Kn and An� into Eq. �30� and using
	K3,4	�Q yields

�C2,1 − i�r�C3 + C4�� + ���Q�r�C3 + C4� + k0C2,1� = 0,

�31�

where k0=Q�2�
+2�r
2. Even though �Q�1, �Q�r�1 for

realistic values of the interfacial resistance; it follows from
Eq. �31� that C1 ,C2�C3 ,C4, therefore the terms containing
C1 and C2 can be neglected from Eqs. �28� and �29�. Those
equations with A30=A40=1 take the form of

�

�

ei�/2 = �C3 + C4� + ��K3C3 + K4C4� , �32�

0 = �A3zC3 + A4zC4� + ��A3zK3C3 + A4zK4C4� . �33�

In the following we work in the limit of �z��r
2, so we take

A3z and A4z given by Eq. �22� to get

C3,4 =
�ei�/2

2�
�1 + K3,4��

1 � i

�r
2

�z
� , �34�

where the expression �20� for the roots K3,4 can be approxi-
mated as K3,4
Q�2�
+2�r

2�2i�z in this case. Substituting
C3 and C4 into Eq. �31� gives the remaining two amplitudes,

C1,2 =
�ei�/2�r�i � �Q�

2�
�1 + k0��

1 − i�r

2/�z

1 + K3�
+

1 + i�r
2/�z

1 + K4�
� . �35�

The term i can be neglected from the numerator because
�Q�1. Furthermore, since K3 and K4 are complex conju-
gates if �z��r

2, the sum in Eq. �35� can be simplified to

C1,2 = �
�ei�/2�r�Q

�
�1 + k0��
Re
1 − i�r

2/�z

1 + K3�
� . �36�

The results for B3,4 and B1,2 are the same as those given by
Eqs. �34� and �36� with the only difference being a minus
sign before i� /2 in the phase factor of �.

The Josephson current in the S/FM/S junction of area A is
given by35
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I =
�� fA

e
kBT �


�0
Im�Tr
F̂��z��̂y

dF̂�z�
dz

�̂y�� , �37�

which can be evaluated in the range 0�z�d. We can sub-
stitute the solution �24� into Eq. �37� and take z=d; most
terms do not give any imaginary contribution to the trace,
hence we obtain

I =
�� fA

e
kBT �


�0
Im�S1 + S2� , �38�

S1 = 2�
0,z

�

n=1

4

Bn
�An�0,z�

� e−Kn
�d�

n=1

4

CnAn�0,z�Kn

− �
n=1

4

Cn
�An�0,z�

� �
n=1

4

BnAn�0,z�Kne−Knd� , �39�

S2 = − �
�

�

n=1

4

Bn
�An�

� e−Kn
�d�

n=1

4

CnAn��Kn � iQ�

− �
n=1

4

Cn
�An�

� �
n=1

4

BnAn��Kn � iQ�e−Knd� . �40�

The first term S1 mainly contains the solutions corresponding
to the eigenvalues K3,4, while the second term S2 is mainly
contributed by the solutions corresponding to K1,2. By using
the values of An0, Anz, and An� in the limit �z��r

2, the ex-
pressions for S1 and S2 become

S1 = 4K3e−K3d
1 + i
�r

2

�z
��B4

�C3 − C4
�B3�

+ 4K4e−K4d
1 − i
�r

2

�z
��B3

�C4 − C3
�B4� �41�

S2 = 4k0�e−K1d�C2
�B1 − B2

�C1� + e−K2d�C1
�B2 − B1

�C2��
�42�

in the main approximation. Here we neglected the terms con-
taining the small amplitudes A10, A20, A3�, and A4� and used
the fact that 	A3z	= 	A4z	=1 if �z��r

2. By taking K2=K1
� and

K4=K3
� into account, then putting the above-obtained expres-

sions for Bn and Cn into Eqs. �41� and �42� we obtain

S1 = 4i sin���
�2

�2
2Re� K3e−K3d

�1 + K3��2
1 − i
�r

2

�z
�� , �43�

S2 = 16i sin���
�2

�2
2�Re
1 − i�r
2/�z

1 + K3�
��2

�
�r

2Q2�2k0e−k0d

�1 + k0��2 cos�Qd� . �44�

The Josephson current through the S/FM/S junction therefore
obeys the formula I= Ic sin���, where the critical current Ic is
given by

IcRn = 4�kBT
d + 2� f�B

e �

�0

�2

�2
2

��Re� K3e−K3d

�1 + K3��2
1 − i
�r

2

�z
��

+ �Re
1 − i�r
2/�z

1 + K3�
��24�r

2Q2�2k0e−k0d

�1 + k0��2 cos�Qd��
�45�

with Rn= �d+2� f�B� /� fA being the normal-state resistance of
the junction.

The dependence of IcRn on the thickness d predicted by
Eq. �45� is plotted in Fig. 2 �left� for two values of the inter-
facial resistance R. Both curves show a small rapid oscilla-
tion superimposed on a large slow oscillation; they both de-
cay on the scale of the slow oscillation. Comparison between

Iz

Ir
I

Iz

Ir

I

FIG. 2. �Color online� Typical IcRn dependence on the thickness d of the FM layer ��=2.2�10−22 J, Q=9�108 m−1, Df =6
�10−4 m2 s−1, Ds=2.5�10−4 m2 s−1, � f =4�106 �	m�−1, and �s=6�106 �	m�−1�: �left� in the limit of �z��r

2 �Ir /kB= Iz /kB=100 K�
and �right� in the limit of �z��r

2 �Ir /kB=130 K, Iz /kB�4 K� for two different values of the interfacial resistance R.
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the two curves demonstrates that an increase in R reduces the
current, but makes the rapid oscillations relatively more pro-
nounced.

The first term in Eq. �45� gives the slow oscillation, which
is mainly due to the “short-range” singlet and triplet compo-

nents of the anomalous Green function F̂ �i.e., the singlet
component f0 and the triplet component fz with zero projec-
tion on the z axis�. Conversely, the second term in Eq. �45�
corresponds to the rapid oscillation, which is related to the
“long-range” triplet components �i.e., the triplet components
f� with projection �1 on the z axis�. Note that in our case
the terms “short range” and “long range” do not mean any
difference in the respective decaying lengths; they are only
defined like this to be consistent with the notions used in
other papers.35,38

Unlike the slow oscillation which is also present in a sys-
tem with a homogeneous FM, the rapid oscillation appears as
a direct consequence of the inhomogeneous magnetization.
This is shown clearly by the coincidence of its oscillation
period and the magnetic spiral wavelength �. The magneti-
zation changes quickly with respect to the FM coherence
length � f, which explains why the amplitude of the rapid
oscillation is small compared to that of the slow oscillation.

By taking the limit of Ir→0 �and hence �r→0�, we re-
cover an S/FM/S junction with a homogeneous FM of ex-
change energy Iz. In this limit, Eq. �45� reduces to

IcRn = 4�kBT
d + 2� f�B

e �

�0

�2

�2
2Re� K3e−K3d

�1 + K3��2� �46�

with the root K3 taking the form of

K3 = �2k

2 + 2ikz

2. �47�

This is the standard formula for IcRn in a Josephson junction
with a homogeneous FM weak link.1

The same result is obtained in the limit of Q→� because
�r=kr

2 /Q2→0 in this case. The amplitude of the rapid oscil-
lation vanishes as Q−2, and hence we recover Eq. �46�. This
is physically understandable; as the FM coherence length
becomes very much larger than the characteristic spiral
wavelength, the radial magnetization “averages out” on the
scale of � f, which means that the situation is equivalent to
Ir→0.

Now we can return to Eqs. �32� and �33� and take the
opposite limit, i.e., where �z��r

2. In this case we use A3z and
A4z given by Eq. �23� to obtain different values for the am-
plitudes Bn and Cn. However, the expression �38� with the
same terms S1 and S2 still holds for the Josephson current.
After substituting the new values of Bn and Cn into Eq. �38�
and taking approximations valid in the given limit, we re-
cover I= Ic sin��� and obtain

IcRn = 4�kBT
d + 2� f�B

e �

�0

�2

�2
2

��� K3e−K3d

�1 + K3��2 −
�z

2

4�r
4

K4e−K4d

�1 + K4��2�
+

4�r
2Q2�2k0e−k0d

�1 + k0��2�1 + K3��2cos�Qd�� �48�

for the critical current. The roots K3,4 given by Eq. �20� can
be approximated as K3
Q�2�
+4�r

2 and K4
Q�2�
 if �z
��r

2.
The IcRn dependence on d as given by Eq. �48� is repre-

sented in Fig. 2 �right�. The rapid oscillation is similar as in
the limit of �z��r

2, but the slow oscillation is absent; the
other component of Ic decays exponentially without oscilla-
tion. The rapid oscillation is still related to the “long-range”
triplet components, whereas the exponential decay is related
to the “short-range” singlet and triplet components.

In the case between the two limits �where �z��r
2�, both

expressions �45� and �48� are applicable, but they are not as
accurate as when they are used in their respective limiting
cases. Since the approximations leading to Eq. �45� are less
sensitive than those required for Eq. �48�, the former is pre-
ferred to be used in such a case.

V. COMPUTATIONAL METHOD FOR CALCULATING
THE JOSEPHSON CURRENT

In this section we describe an alternative method for ob-
taining the Josephson current in the S/FM/S junction; it re-
quires computational power and does not yield an analytical
formula, but is exact within the framework of the linearized
Usadel equations. The basic steps are the same as in the
previous sections: we first solve the linearized Usadel Eq. �2�
with the boundary conditions �Eqs. �26� and �27��, then
evaluate Eq. �37� at a suitable location.

Let us introduce the formal vector

F�z� = 
 f0, fx, fy, fz,
df0

dz
,
dfx

dz
,
dfy

dz
,
dfz

dz
� �49�

containing the components of F̂ and their respective deriva-
tives with respect to z. We denote the value of this vector FL
at the right side of the left S �at z=0� and FR at the left side
of the right S �at z=d�. These consist of the components of

F̂L and F̂R, respectively. FL and FR can be related through a
matrix-type equation and because we know the first four
components of both FL and FR, we can use this equation to
obtain the remaining four components �the derivatives�.

The Josephson current is evaluated with Eq. �37� in the S
side of the left S/FM interface; since we calculate the current
in the S, we must substitute �s instead of � f in Eq. �37�. By
using fxL= fyL= fzL=0 the formula simplifies to

I =
2��sA

e
kBT �


�0
Im
 f0L

df0L

dz
� . �50�

By setting the phase difference to �=� /2 we obtain

IcRn = 2�kBT
�s�d + 2� f�B�

e� f
�

�0

Im
 f0L
df0L

dz
� . �51�

Note that the values of f0L and df0L /dz depend on the phase
difference �, as well as on other parameters describing the
junction.

Evaluating df0L /dz requires inverting matrices and taking
matrix exponentials, therefore this method does not give an
analytical formula like expressions �45� and �48�. On the
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other hand, it gives the right result in the more general case,
even if Q is not large �in which case neither Eq. �45� nor Eq.
�48� is applicable�. This method can also be used to check
analytical results; in our case it seems that within their re-
spective ranges, Eqs. �45� and �48� show good coincidence
with the results obtained by the computational method �see
Fig. 3�.

VI. SUMMARY

We have calculated the Josephson current in a
superconductor/ferromagnetic/superconductor junction in
which the ferromagnet has a conical magnetic structure. In
view of the realistic interfaces that can exist between thin-
film superconductors �Al, Pb, and Nb being the elements
typically used� and thin films of conical magnets such as Ho,
we have extended the problem to a regime in which the
ferromagnetic coherence length is long compared to the elec-
tron mean-free path and the normalized spiral length of the
magnetic spiral.

From the materials point of view, the dirty-limit model we
present is physically reasonable and most applicable for
when the Ho thin film is polycrystalline. The electron mean-
free path of thin film Ho is �1.0 nm and its normalized
spiral length �1.1 nm, whereas the coherence length in such
films has recently been determined to be in the 6–7 nm
range.48

In this new situation, we have shown that the Josephson
current is highly sensitive to the length of the conical ferro-
magnet � with the current containing a rapidly oscillating
component in the function of the total conical magnetic
thickness. These rapid oscillations are superimposed on a
much slower oscillation which has a longer wavelength. The
longer oscillation is directly linked to the strength of the
ferromagnetic component and mainly depends on the singlet

part of the anomalous Green function F̂. The sign of the
longer oscillation varies with multiple phase transitions from
0 to � which depend on the thickness of the magnetic layer.
The rapid oscillations are linked to the triplet components f�

of the anomalous Green function F̂. Although of a shorter
wavelength to the slower oscillations, this rapid oscillation
also decays on the scale of the magnetic coherence length.

The main feature of the results presented in this paper is
that the Josephson coupling through a conical ferromagnet
may not be long ranged as previously expected. In the limit
considered, we have shown that the proximity effect is short
with a length scale comparable to that of the proximity ef-
fects in a weak and collinear ferromagnet. Thus, the theory
explained in this paper is complementary to previous
studies36–38 which assume that the magnetism of thin-film
conical magnets is comparable to the magnetism of conical
magnets in bulk single-crystal form.

From the experimental view, the theory presented in this
paper is directly applicable to situations in which two
singlet-type superconductors are coupled via a rare-earth
conical magnet �e.g., Ho�. The experiment should be de-
signed in such a way that the current flowing through the
superconductor/ferromagnetic/superconductor junction is re-
stricted to the growth direction of the conical magnet, e.g.,
along the z axis, such as in the case illustrated in Fig. 1�a�.
For similar experimental situations, see Refs. 18 and 49.
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FIG. 3. �Color online� Comparison of the analytical �solid curve� and computational �dashed curve� results for IcRn in the function of the
thickness d: �left� in the limit of �z��r

2 and �right� in the limit of �z��r
2. The parameters used are identical to those in Fig. 2 with R

=3.0�10−15 	m2.
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